Abstract

This paper analyzes the grain-size distribution of surface sediments of the Chanthaburi coast of Thailand to investigate the sedimentary environment and its evolution to better use and protect the coast. The Flemming triangle method, the grade-standard deviation method, and the Gao–Collins grain-size trend analysis method (GSTA model) were used to study the dynamic sedimentary environment of the area and provide preliminary identification of source materials. There are seven types of surface sediments on this coast, with grain sizes (φ) generally consisting of sand and silt. Sorting is generally poor, and becomes gradually poorer with distance offshore. Skewness is generally positive. The study area is mainly composed of sand and silt, indicating that the hydrodynamics are strong. The results of grade-standard deviation analysis indicate that sediment grain size b (3.25–4.5φ) is a sensitive indicator of environmental change. This sediment type exhibits a relatively complex transport trend, mainly characterized by northwestward and northeastward transport from sea to land. Sediments at the mouth of the Chanthaburi Estuary and the Welu River fluctuate under the influence of tidal currents. Based on the results of grade-standard deviation analysis and grain-size trend analysis, the study area was divided into three provinces, representing different sedimentary environments and material sources. Compared with tidal-controlled estuaries in the temperate regions of eastern China, the two tropical estuaries examined in this study exhibited smaller suspended sediment loads, runoff amounts, and tidal ranges. However, hydrodynamic conditions were generally stronger. The main reasons for the similarities and differences in the transport trends of sediments in these estuaries were differences in hydrodynamic conditions and the specifics of regional topography.

Highlights

  • The Gulf of Thailand is located on the Sunda Shelf of the South China Sea

  • By analyzing the surface sediment characteristics of the Chanthaburi coast of Thailand, this study provides a scientific basis for further revealing the evolution of the sedimentary environment, contributing to the utilization and protection of the coast

  • The more recently developed Gao–Collins method improves upon GSTA by implementing two-dimensional grain-size trend analysis, whereby changes in grain-size parameters are identified in a planar distribution [13,14]

Read more

Summary

Introduction

The Gulf of Thailand is located on the Sunda Shelf of the South China Sea. Water depths are generally shallow, and the gulf is largely surrounded by the land masses of Thailand, Cambodia, and Malaysia. Using the grade-standard deviation method, previous studies have successfully identified the sensitive grain-size component to indicate changes in the dynamics of the sedimentary environment [6]. Further analyses such as grain-size trend analysis (GSTA), which evaluates the mean size, sorting coefficient, and skewness of the sediments, can be carried out to characterize grain-size characteristics and provide insight into the sedimentary environment [11,12]. The more recently developed Gao–Collins method improves upon GSTA by implementing two-dimensional grain-size trend analysis, whereby changes in grain-size parameters are identified in a planar distribution [13,14] This method has been applied to many marine environments including the Bohai Sea, the South China Sea, and the Mediterranean Sea [15,16,17]. Methods included the Flemming triangle method, the grade-standard deviation method, and the Gao–Collins two-dimensional grain-size trend analysis method

Sediment Sampling
Results
Analysis of Sediment Grain-Size Characteristics
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call