Abstract

Granular materials are used in several fields and in a wide variety of processes. An important feature of these materials is the diversity of grain sizes, commonly referred to as polydispersity. When granular materials are sheared, they exhibit a predominant small elastic range. Then, the material yields, with or without a peak shear strength depending on the initial density. Finally, the material reaches a stationary state, in which it deforms at a constant shear stress, which can be linked to the residual friction angle ϕ_{r}. However, the role of polydispersity on the shear strength of granular materials is still a matter of debate. In particular, a series of investigations have proved, using numerical simulations, that ϕ_{r} is independent of polydispersity. This counterintuitive observation remains elusive to experimentalists, and especially for some technical communities that use ϕ_{r} as a design parameter (e.g., the soil mechanics community). In this Letter, we studied experimentally the effects of polydispersity on ϕ_{r}. In order to do so, we built samples of ceramic beads and then sheared these samples in a triaxial apparatus. We varied polydispersity, building monodisperse, bidisperse, and polydisperse granular samples; this allowed us to study the effects of grain size, size span, and grain size distribution on ϕ_{r}. We find that ϕ_{r} is indeed independent of polydispersity, confirming the previous findings achieved through numerical simulations. Our work fairly closes the gap of knowledge between experiments and simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.