Abstract

Nanocrystalline diamond (NCD) films with a thickness of ~ 6 µm and average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized in order to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp 2-bonded carbon and hydrogen impurities are low, showing a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp 2 carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, since both stiffness and hardness decrease with the reduction in crystal size. These trends suggest gradual changes in the nature of the grain boundaries, from graphitic in case of 60 nm grain size material to hydrogen terminated sp 3 carbon in 9 nm grain size material. The films exhibit low levels of internal stress and free-standing structures with a length of several centimeters could be fabricated without noticeable bending

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.