Abstract
The grain size dependence of creep is critical to understand the plastic deformation mechanism of nanoscale metals. Here we used molecular dynamics to study the stress-induced grain size exponent transition in creep of nanocrystalline copper. The grain size exponent was found to initially increase with increasing stress, then decrease after some critical stress. The derived grain size exponents are in agreement with experimental results for diffusional and grain boundary sliding creep at low stress. While, the founded decreasing grain size exponent with increasing stress for dislocation nucleation creep in nanocrystal is in contrast with conventional materials. We propose a constitutive equation for dislocation nucleation governed creep in nanocrystal to explain its grain size dependence transition with stress.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.