Abstract

Thin films are used in wide range of applications in industry, such as solar cells and LEDs. When thin films are deposited on substrates, various stresses are generated due to the mechanical difference between the film and substrate. These stresses can cause defects, such as cracking and buckling. Therefore, knowledge of the mechanical properties is important for improving their reliability and stability. In this study, the thermal expansion coefficient of FCC metallic thin films, such as Ag and Cu, which have different grain sizes and thicknesses, were calculated using the thermal cycling method. As a result, thermal expansion coefficient increased with increasing grain size. However, the film thickness had no remarkable effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.