Abstract
Predictions of bed load sediment flux are notoriously imprecise despite widespread occurrence and importance in contexts ranging from river restoration to planetary exploration. Natural variations in grain size, shape and density are possible sources of inaccuracy in sediment transport, as well as mixtures of different grain sizesand time-dependent bed structure. While many of these effects have been studied in depth, the effects of grain shape have rarely been quantified, even though shape has long been hypothesized to influence sediment transport.During bed load transport, the granular bed is sheared by the flow passing over it. Aspherical grains and rough surfaces generally increase the resistance to such shearing, enhancing frictional resistance, and reducing the efficiency of bed load transport. However, aspherical grains also experience higher fluid drag force than spherical grains of the same volume, enhancing transport efficiency under the same flow conditions. These two competing effects generally get stronger as grain shape deviates from spherical, making it challenging to predict the net effect of grain shape on sediment transport. We disentangle these competing effects by formulating a theory that accounts for the influence of grain shape on both fluid-grain and grain-grain interactions. It predicts that the onset and efficiency of transport depend on the average coefficients of drag and bulk friction of the transported grains. Because we use the average statistics of drag and friction to characterize the effect of grain shape, our approach is also applicable to materials like natural gravel that have many different shapes in the same sample.Using a series of flume experiments with different granular materials of distinct shapes, we show that grain shape can modify bed load transport rates by an amount comparable to the scatter in many sediment transport data sets. Our data also demonstrates that, although bed load transport of aspherical grains is generally inhibited by higher bulk friction and enhanced by higher fluid drag, these two effects do not simply cancel each other. This means that the effect of grain shape on sediment transport can be difficult to intuit from the appearance of grains, with the possibility for grain shape changes to lead to either a reduction or an enhancement of sediment transport efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.