Abstract
A variety of experimental techniques have been used to advance understanding of strain localization phenomena in sands. However, all of these methods have fallen short in characterizing the evolution of the grain-scale processes that necessarily control shear band formation and growth in sands. This paper presents results of application of the non-destructive displacement measurement technique of digital image correlation (DIC) to measure two- and three-dimensional surface displacements on plane strain and axisymmetric sand specimens over short time steps. The abundance of local displacement data, high level of accuracy, and nearly continuous (spatially and temporally) record of displacement evolution afforded by the DIC technique has finally enabled a means to quantify local displacements to particulate-scale intensity. The data have been used to evaluate the local displacement mechanisms leading to the triggering of the formation of persistent shear bands, the timing of shear band formation with regard to the achievement of peak stress, and the character of displacements within fully formed shear bands. Insights are offered regarding the relation between strain localization and global stress–strain behavior, and the ensuing interpretations of shear banding as a hardening or softening phenomenon. Comparison of behavior between plane strain and triaxial tests offer additional perspective on the influences of three-dimensional stresses and boundary conditions on shear banding. The results further shed light on the micro-deformation mechanisms (i.e. buckling columns) responsible for the observed local strain non-uniformities that characterize “steady-state” shear band evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.