Abstract
The tribological behavior of equiatomic face-centered cubic (FCC) VCoNi medium-entropy alloy (MEA) remains underexplored despite of the alloy’s notable tensile strength and ductility. In this study, the tribological performance of VCoNi MEA is investigated using microscratching techniques, with emphasis on the effects of grain orientation, normal force, and scratch velocity. The study has demonstrated that the grain orientation in VCoNi MEA determines the activation of slip systems during the scratching processes, which significantly affects the morphology of wear tracks, slip steps and pile-up, as well as changes in microtribological behavior. As the normal force increases, the degree of wear intensifies, which is attributed to the significant material pile-up and more intense plastic flow. The plastic deformation of VCoNi MEA is found to be independent of scratch velocity within the 0.1–2 µm/s range. Ploughing and micro-shearing are identified as the primary wear mechanisms under various friction conditions. Furthermore, during the ploughing process, the deformation mechanism of the alloy is still dominated by dislocations. The direction of dislocation motion aligns with the direction of pile-up resulted from plastic deformation. The present study offers critical insights into the tribological behavior of medium-entropy alloys and broadens the potential for their applications in friction-intensive environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.