Abstract
ABSTRACT The importance of grain rotation during shear deformation has been widely recognized in the mechanics of granular materials, which has led to extensive use of the Cosserat continuum theory in localization problems. Strain gradient theory, which relates the macro deformation gradient to higher-order stresses, is another possibility to overcome the ill-posedness of governing equations. This paper attempts to show an experimental basis for applying strain gradient theory to granular media. LAT (Laser-Aided Tomography), a technique to visualize the interior of 3-D granular assembly, is used to detect the grain rotation as well as the continuum rotation. A Discrete Element simulation is also conducted to reinforce the experimental data. It is concluded that the average grain rotation is roughly identical to the continuum rotation, which supports the applicability of rotational gradient theory, a particular case of strain gradient theory from the micro-mechanical point of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.