Abstract

In this paper, the mechanical response of ultra fine grained metallic materials under high strain rate impact conditions is investigated by means of a finite element based numerical framework. A dislocation based viscoplastic model is used to predict the evolution of the initial fine grain microstructure (average grain size of 203 nm or 238 nm, depending on the material history) with impact deformation. A Taylor impact test is simulated in order to assess the validity of a numerical solution through comparison with experiment. It is shown that our model captures the essential features of the mechanical behaviour. A further grain refinement down to the average grain size of 140–160 nm is predicted by the simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.