Abstract

A fine and equiaxed solidification process delivers multidimensional benefits to Mg-alloys, such as improved castability, reduced casting defects, enhanced mechanical properties, increased corrosion resistance and potential for increased recycled contents. Despite extensive research on grain refinement of Mg-alloys in the last few decades, currently, there is no effective grain refiner available for refining Mg-Al alloys, and our current understanding of grain refining mechanisms is not adequate to facilitate the development of effective grain refiners. Under the EPSRC (UK) LiME Hub's research program, substantial advances have been made in understanding the early stages of solidification covering prenucleation, heterogeneous nucleation, grain initiation and grain refinement. In this paper, we provide a comprehensive overview of grain refinement of Mg-alloys by native MgO particles. We show that native MgO particles can be made available for effective grain refinement of Mg-alloys by intensive melt shearing regardless of the alloy compositions. More importantly, we demonstrate that (1) the addition of more potent exogenous particles will not be more effective than native MgO; and (2) MgO particles are difficult to be made more impotent for grain refinement through promoting explosive grain initiation. We suggest that the most effective approach to grain refinement of Mg-alloys is to make more native MgO particles available for grain refinement through dispersion, such as by intensive melt shearing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.