Abstract

A thermomechanical process for grain refinement in precipitation hardening aluminum alloys is reported. The process includes severe overaging, deformation, and recrystallization steps. Microstructural studies by optical and transmission electron microscopy of grain refinement in 7075 aluminum have revealed that precipitates formed during the overaging step create preferential nucleation sites for recrystallizing grains. The relationship between precipitate density following severe overaging and recrystallized grain density has been investigated; the results show that the localized deformation zones associated with particles larger than about 0.75 μ m can act at preferential nucleation sites for recrystallizing grains. The density of particles capable of producing nucleation sites for new grains is approximately ten times greater than the density of recrystallized grains. A close relationship between dislocation cell size after the deformation step and recrystallized grain density has also been established. Both quantities saturate for rolling reductions larger than approximately 85 pct. The grain size produced in 2.5 mm thick sheet by the optimum processing schedule is approximately 10 μm in longitudinal and long transverse directions and 6 μm in the short transverse direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call