Abstract
Equal-channel angular pressing (ECAP) is an effective tool for refining the grain structure of magnesium alloys and improving the ductility at moderate temperatures. However, grain refinement in these alloys differs from other metals because new grains are formed along the boundaries of the initial structure and these newly formed grains slowly spread to consume the interiors of the larger grains in subsequent passes. A model is presented for grain refinement in magnesium alloys processed by ECAP based on the principles of dynamic recrystallization where new fine grains are formed along the initial boundaries and along twin boundaries. This model provides an explanation for a wide range of experimental data and introduces the concept of grain size engineering for achieving selected material properties in magnesium alloys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.