Abstract

We study the effects of a detailed dust treatment on the properties and evolution of early-type galaxies containing central black holes, as determined by AGN feedback. We find that during cooling flow episodes, radiation pressure on the dust in and interior to infalling shells of cold gas can greatly impact the amount of gas able to be accreted and therefore the frequency of AGN bursts. However, the overall hydrodynamic evolution of all models, including mass budget, is relatively robust to the assumptions on dust. We find that IR re-emission from hot dust can dominate the bolometric luminosity of the galaxy during the early stages of an AGN burst, reaching values in excess of $10^{46}$ erg/s. The AGN-emitted UV is largely absorbed, but the optical depth in the IR does not exceed unity, so the radiation momentum input never exceeds $L_{\rm BH}/c$. We constrain the viability of our models by comparing the AGN duty cycle, broadband luminosities, dust mass, black hole mass, and other model predictions to current observations. These constraints force us to models wherein the dust to metals ratios are $\simeq 1%$ of the Galactic value, and only models with a dynamic dust to gas ratio are able to produce both quiescent galaxies consistent with observations and high obscured fractions during AGN "on" phases. During AGN outbursts, we predict that a large fraction of the FIR luminosity can be attributed to warm dust emission ($\simeq100$ K) from dense dusty gas within $\leq 1$ kpc reradiating the AGN UV emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.