Abstract

Some feature of discontinuous dynamic recrystallization (DRX) in an Fe-0.4%C-18%Mn austenitic steel during isothermal compression tests at temperatures of 973-1373 K and strain rates of 10-3-10-1 s-1 were studied. The DRX microstructures consisted of various grains, i.e., DRX nuclei, growing DRX grains, and work-hardened DRX grains, which differentiated with the grain orientation spread (GOS). DRX was commonly promoted by a decrease in temperature-compensated strain rate, i.e., Zener-Hollomon parameter (Z), corresponding to an increase in deformation temperature and/or a decrease in strain rate. In contrast, the GOS distribution varied non-monotonously with Z. The large area fraction of DRX grains with small GOS below 1° appeared at definite temperature/strain rate conditions. The large fraction above 0.6 of DRX grains with small GOS was observed in DRX microstructures with a large ratio of CSL Σ3 boundary fraction to low-angle subboundary fraction. The GOS distribution in the DRX microstructures is discussed in terms of the DRX grain nucleation and growth rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call