Abstract

A novel bismuth‐doped zinc oxide (ZnO) laminated structure is prepared in the present study. Seven layers with thickness ranging from 20 to 140 μm are laminated together with platinum (Pt) inner electrodes. The growth of Bi2O3‐doped ZnO grains within a very limited space between Pt electrodes is investigated. The grain growth behavior outside the confinement of electrodes is also studied for comparison purposes. At the beginning of sintering, a similar grain growth behavior is observed at different locations of the laminated structure. However, as sintering proceeds, the rate of grain growth within the Pt inner electrodes is decreased because of the decrease of available transportation paths. The grains between the electrodes then develop into a columnar shape as they make contact with the electrodes above and below them. Both the grain size and its distribution decrease with decreasing layer thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.