Abstract

The natural 13C abundance (δ13C) in plant leaves has been used for decades with great success in agronomy to monitor water‐use efficiency and select modern cultivars adapted to dry conditions. However, in wheat, it is also important to find genotypes with high carbon allocation to spikes and grains, and thus with a high harvest index (HI) and/or low carbon losses via respiration. Finding isotope‐based markers of carbon partitioning to grains would be extremely useful since isotope analyses are inexpensive and can be performed routinely at high throughput. Here, we took the advantage of a set of field trials made of more than 600 plots with several wheat cultivars and measured agronomic parameters as well as δ13C values in leaves and grains. We find a linear relationship between the apparent isotope discrimination between leaves and grain (denoted as Δδcorr), and the respiration use efficiency‐to‐HI ratio. It means that overall, efficient carbon allocation to grains is associated with a small isotopic difference between leaves and grains. This effect is explained by postphotosynthetic isotope fractionations, and we show that this can be modelled by equations describing the carbon isotope composition in grains along the wheat growth cycle. Our results show that 13C natural abundance in grains could be useful to find genotypes with better carbon allocation properties and assist current wheat breeding technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call