Abstract

The disruption in crystallographic arrangement of atoms across a grain boundary interface generates local stress fields in the vicinity. Here, we reconstruct the continuum-equivalent grain boundary tractions from local atomic stresses near symmetrical-tilt 〈110〉 Ni grain boundaries. We show that the resolved shear stress contribution from the grain boundary tractions, τGB, along active slip-systems either assists or prevents the emission of dislocations, depending on its direction with respect to the resolved shear stress contribution from external loading, τext. When τGB acts in the same direction as τext, Shockley partial dislocations are readily emitted from the boundary once |τGB+τext| exceeds the critical barrier stress for shear-slip. When τGB opposes τext, the higher sustainable stresses in the grain boundary structure instead triggers: (a) emission of dislocations from the bulk, or (b) reconfiguration of the grain boundary atomic structure and subsequent emission of non-Schmid dislocations or formation of extrinsic stacking faults. Our results quantitatively explain the asymmetrical grain boundary dislocation emission processes observed in molecular dynamics (MD) simulations under applied tensile and compressive loads. The relationship between the traction signatures and periodic structural units along the grain boundary is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.