Abstract

Majorana zero modes (MZMs) are of central importance for modern condensed matter physics and quantum information due to their non-Abelian nature, which thereby offers the possibility of realizing topological quantum bits. We here show that a grain boundary (GB) defect can host a topological superconductor (SC), with a pair of cohabitating MZMs at its end when immersed in a parent two-dimensional gapped topological SC with the Fermi surface enclosing a nonzero momentum. The essence of our proposal lies in the magnetic-field driven hybridization of the localized MZMs at the elementary blocks of the GB defect, the single lattice dislocations, due to the MZM spin being locked to the Burgers vector. Indeed, as we show through numerical and analytical calculations, the GB topological SC with two localized MZMs emerges in a finite range of both the angle and magnitude of the external magnetic field. Our work demonstrates the possibility of defect-based platforms for quantum information technology and opens up a route for their systematic search in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call