Abstract

The nucleation of creep cavities, which control the creep ductility is assumed to take place by grain boundary sliding. To determine the grain boundary sliding rate at longer testing times than previously available in the literature, two creep tests have been performed at constant loading rate at 125°C for oxygen free copper with phosphorus (Cu-OFP). The tests were interrupted after certain strains and the amount of grain boundary sliding (GBS) was measured on flat polished surfaces. The observed amount of GBS per unit strain was 20 to 65 μm. This is of the same order of magnitude as for published tensile tests (Pettersson, 150 and 200°C) and short time creep tests (Ayensu and Langdon, 400–600°C). The amount of GBS was modelled based on previously performed FEM investigations. For conditions corresponding to the experiments a value of 52μm was obtained.A model by Lim for cavity nucleation at junctions between cell and grain boundaries has been adapted to oxygen free pure copper Cu-OF and Cu-OFP. The results show that the gain in free energy at cavity nucleation is much larger for Cu-OF than for Cu-OFP implying that Cu-OF is much more prone to cavity formation. The modelled difference in free energy gain is sufficient to quantitatively explain the much higher creep ductility in Cu-OFP than in Cu-OF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call