Abstract

Grain boundary segregation of phosphorus has been studied in FeVP and FeVPC alloys through fracture experiments in a scanning Auger microprobe with the objective of examining the effects of vanadium on the interaction processes operative under circumstances when the structure in the interior of the grain (in the present case carbide formation) and grain boundary segregation occur simultaneously. It is understood that to predict and analyse the behaviour of an alloy, it is pertinent to consider the atomic interactions both at the grain boundaries and in the grain interior and that between the constituents and the grain boundaries. The study suggests that the determining factor for suppression or decrease in the migration of phosphorus to the grain boundaries is whether vanadium is present in the combined form (say, carbide) or is available in solid solution form. When vanadium is present in solid solution form, grain boundary segregation of phosphorus is low because of the chemical interaction of vanadium and phosphorus. However, as carbon is increasingly introduced in the alloy, vanadium now preferentially interacts with carbon in view of a higher interaction for carbon as compared to that of phosphorus. A consequence of this is an increase in the grain boundary concentration of phosphorus. In such a situation, the presence of excess carbon in addition to what is stoichiometrically required to precipitate the entire vanadium as vanadium carbides serves as a palliative with regard to the reduction in the intergranular concentration of phosphorus. This palliative behaviour is explained in terms of the site-competition model. An effort is also made to examine the behaviour of segregating elements in terms of a whole range of probable interactions (both at the grain boundaries and in the grain interior) and chemical interaction energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.