Abstract

A free-energy function for binary polycrystalline solid solutions is developed based on pairwise nearest-neighbor interactions. The model permits intergranular regions to exhibit unique energetics and compositions from grain interiors, under the assumption of random site occupation in each region. For a given composition, there is an equilibrium grain size, and the alloy configuration in equilibrium generally involves solute segregation. The present approach reduces to a standard model of grain boundary segregation in the limit of infinite grain size, but substantially generalizes prior thermodynamic models for nanoscale alloy systems. In particular, the present model allows consideration of weakly segregating systems, systems away from the dilute limit, and is derived for structures of arbitrary dimensionality. A series of solutions for the equilibrium alloy configuration and grain size are also presented as a function of simple input parameters, including temperature, alloy interaction energies, and component grain boundary energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.