Abstract
The degree of grain growth inhibition in iron-3.1 pct silicon alloys with small additions of boron, nitrogen and sulfur has been observed to correlate strongly with the degree of nitrogen segregation to the grain boundaries. Grain growth was seen to increase monotonically with decreasing nitrogen segregation at 950°C, the temperature at which significant grain growth was first observed to occur. Boron affected the retention of nitrogen in the material at high temperatures and in this way had an indirect effect on grain growth inhibition. Sulfur acted to enhance the effectiveness of nitrogen as a grain growth inhibitor. It is suggested that nitrogen, even at very low grain boundary concentrations affects grain boundary migration by poisoning sites at the grain boundaries which are particularly efficient in attaching atoms to the growing grain surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.