Abstract

Flat surfaces and grain boundaries lying on low crystal planes are singular corresponding to the cusps in the polar (Wulff) plots of their energy against their orientation. The theoretical analysis of the entropy effect at high temperatures shows that these interfaces undergo roughening transitions. The molecular dynamics simulations also show disordering to liquid-like structures at high temperatures that can be interpreted as the roughening transition. Experimentally, singular flat surfaces and grain boundaries become curved at high temperatures or with additives, indicating their roughening transition. The grain boundaries in polycrystals are often faceted with hill-and-valley shapes and their defaceting at high temperatures also show their roughening transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.