Abstract

Intergranular embrittlement due to grain boundary segregation of phosphorus is recognized as one of the potential degradation factors in irradiated reactor low alloy steels at high neutron fluence. In this study, low alloy steels thermally aged at 400-500°C were investigated to evaluate the correlation between phosphorus segregation and intergranular embrittlement. Phosphorus segregation determined using Auger electron spectroscopy increased after thermal aging above 450°C and was in good agreement with the calculated value based on McLean's model. No influence of thermal aging on tensile properties or hardness was observed. The ductile brittle transition temperature determined using a one-third size Charpy impact test increased at a P/Fe peak ratio of 0.14. These results indicated that there is a threshold level of phosphorus segregation for non-hardening embrittlement. The ductile to brittle transition temperature (DBTT) increased with the proportion of intergranular fracture, so this result shows that there is a relationship between DBTT and the proportion of intergranular fracture. The fracture stress decreases due to non-hardening embrittlement on the thermally aged material with high proportion of intergranular fracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.