Abstract

Perovskite solar cells (PSCs) are a strong candidate for next-generation photovoltaics, but their long-term stability poses challenges for use as a future renewable energy source. In particular, ambient moisture causes detrimental effects on not only the stability but also performance of PSCs. Herein, alkylammonium salts with perfluorinated long alkyl chains are introduced to passivate the grain boundaries and form hydrophobic surfaces. The perfluorinated alkyl chain moiety introduced into the perovskite layer reduces defect density and suppresses nonradiative recombination, thereby enhancing carrier transport capability and achieving a power conversion efficiency (PCE) of 20.31 %. Given the hydrophobic effects of fluorinated compounds on PSCs, about 90 % of the initial PCE can be retained after 1,000 h of continuous operation under a relative humidity of ∼ 40 % without encapsulation. The proposed additive strategy thus enables long-term operational stability of PSCs under humid conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call