Abstract

TiO2 is an excellent photocatalytic and photovoltaic material but suffers low efficiency because of deep trap states giving rise to fast charge and energy losses. Using a combination of time-domain density functional theory and nonadiabatic molecular dynamics, we demonstrate that grain boundaries (GBs), which are common in polycrystalline TiO2, accelerate nonradiative electron-hole recombination by a factor of 3. Despite GBs increase the band gap without creating deep trap states, and accelerate coherence loss, they enhance nonadiabatic electron-phonon coupling, and facilitate the relaxation. Importantly, electrons accumulated at the boundaries together with the relatively long-lived excite state favor photocatalytic reaction. Our study rationalizes the experimental observations and provides valuable perspectives for improving the device performance by defect engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.