Abstract
The effect of grain boundary microstructure on the fracture resistance of sulfur-doped polycrystalline nickel was investigated using specimens with different grain boundary microstructures to reveal the usefulness of grain boundary engineering for control of segregation-induced intergranular brittle fracture of polycrystalline materials. The sulfur-doped polycrystalline nickel specimen with more homogeneous fine-grained structure and a higher fraction of low-Σ coincidence site lattice (CSL) boundaries shows higher fracture resistance than the specimen with coarse-grained structure and a lower fraction of low-Σ CSL boundaries. It was found that high-energy random boundaries play a key role as the preferential crack path in fracture processes. The resistance to sulfur segregation-induced intergranular brittle fracture was evaluated by analyzing the fractal dimension of random boundary connectivity in the polycrystalline nickel specimens studied. The fractal dimension of random boundary connectivity decreases with increasing fraction of low-Σ CSL boundaries, resulting in the generation of a higher fracture resistance by restricting more frequent branching and deflection of propagating crack path along random boundaries from the main crack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.