Abstract

The trap-assisted nonradiative recombination at grain surface and grain boundary (GB) of perovskite films impede the further improvement of power conversion efficiency (PCE) and stability of perovskite solar cells (PSCs). In addition, the poor moisture stability of perovskite films hinders the commercial application of PSCs. Herein, we report a multifunctional GB modification strategy where the wide-bandgap hydrophobic PbSO4 modification layer is in situ formed at the GBs of perovskite films through the reaction between methylamine sulfate and PbI2. It is revealed that multiple functions are achieved after the formation of PbSO4 modification layer, including crystallization improvement, defect passivation, and hydrophobicity improvement. As a result, the PbSO4 modified device exhibits a PCE enhancement from 19.53% to 21.90% as compared to the control device. Moreover, up to 71% of its initial PCE is maintained for the unencapsulated PbSO4 modified device after aging under a relative humidity of 80 ± 5% for 250 h. This work proposes an effective multifunctional approach to modify the GBs of perovskite films for the purpose of simultaneous increasement of PCE and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.