Abstract

The effect of heat treatment on ductility loss in a boron-doped Ni3Al was studied by tensile tests of alloy specimens exposed to contaminated environments. Specimens heat-treated extensively in evacuated quartz capsules at 1323 K exhibit only 3.3 pct ductility at 1033 K, whereas a previous study reported a tensile ductility of about 24 pet for specimens heat-treated in a high vacuum system. Aluminum oxide and silicon-contaminated regions were observed at and near external surfaces of capsule-annealed specimens. The reactions occurring during heat treatment are interpreted in terms of thermodynamics. An Auger electron spectroscopy study revealed oxygen penetration along grain boundaries during capsule annealing. Although the surface oxide layer and silicon contamination both contribute to some reductions in ductility, the major cause for embrittlement comes from oxygen penetration along grain boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call