Abstract

Structural transformation in gallium arsenide nanocrystals under pressure is studied using molecular-dynamics simulations on parallel computers. It is found that the transformation from fourfold to sixfold coordination is nucleated on the nanocrystal surface and proceeds inwards with increasing pressure. Inequivalent nucleation of the high-pressure phase at different sites leads to inhomogeneous deformation of the nanocrystal. This results in the transformed nanocrystal having grains of different orientations separated by grain boundaries. A new method based on microscopic transition paths is introduced to uniquely characterize grains and deformations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.