Abstract

The objective was to discern the neuroregenerative effect of grafts of extra-adrenal cells of the Zuckerkandl's paraganglion (ZP) in the nigrostriatal circuit, by using the retrograde model of parkinsonism in rats. The antiparkinsonian efficacy of two types of grafting procedures was studied (cell aggregates vs. dispersed cells), and GDNF and TGFβ 1 (dopaminotrophic factors) as well as dopamine presence in extra-adrenal tissue was analyzed. Extra-adrenal chromaffin cells are noradrenergics, tissue dopamine is low, and they express both GDNF and TGFβ 1. Grafts of cell aggregates, not of dispersed cells, exerted a trophic regeneration of the host striatum, leading to amelioration of motor deficits. Sprouting of spared dopaminergic fibers within the striatum, reduction of dopamine axon degeneration, and/or enhanced phenotypic expression of TH would explain striatal regeneration. Grafted cells as aggregates showed a better survival rate than dispersed cells, and they express higher levels of GDNF. Higher survivability and GDNF content together with the neurorestorative and dopaminotrophic action of both GDNF and TGFβ 1 could account for striatal recovery and functional amelioration after grafting ZP cell aggregates. Finally, nigral degeneration and partial degeneration of ventral tegmental area were not precluded after transplantation, indicating that the trophic effect of grafts was local within the host striatum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.