Abstract

Antibiotic pollution has become a global problem threatening human health. Ofloxacin is one of the more widely used antibiotics, but reports on the reaction of plant to ofloxacin pollution are limited. In this study, using adversity-resistant (R), adversity-sensitive (S) and grafted plant S/R as models, we investigated the biological response of tomato to exogenous ofloxacin residues. The results showed that lower levels of ofloxacin treatment (5 mg L−1 and 10 mg L−1) promoted tomato growth, and 10 mg L−1 ofloxacin was the critical dose to stimulate growth among the different treatments. In addition, the photosynthetic and fluorescence parameters, antioxidant enzyme activities and transcription-level expression of the enzymes were stimulated by low ofloxacin treatment. However, high ofloxacin treatment (20 mg L−1 and 40 mg L−1) exhibited a significantly negative effect on plant growth, photosynthesis, fluorescence parameters, antioxidant enzyme activities and transcript levels expression. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels increased with increasing ofloxacin concentrations, indicating that the oxidative damage of plants was severe with increasing doses. In contrast, the role of antioxidant enzymes in the antibiotic response was limited at high ofloxacin concentrations. The grafting experiment demonstrated that grafted plants had the ability to alleviate ofloxacin stress. In conclusion, ofloxacin can damage the photosynthetic machinery by promoting ROS accumulation, which results in the etiolation of tomato leaves and inhibits plant growth, but grafting can reduce its.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call