Abstract

AbstractResults from the grafting of poly(acrylic acid) (PAA) onto cellulosic microfibers and continuous cellulose filaments are presented. The grafting of PAA onto cellulosic fibers offers the possibility of developing enhanced ion exchange and fluid absorbency on the fibers. The grafting of PAA was carried out with a two‐step procedure. First, vinyl‐terminated ethoxy silane was deposited on the surface of the fiber. This was followed by a grafting polymerization reaction in aqueous media of acrylic acid with different concentrations of potassium persulfate (KPS), which acted as the initiator. The percentage of grafting increased with increasing KPS concentration and reached a maximum value at a concentration of about 0.4 wt % with respect to the weight of the fiber. The grafted copolymer was characterized by Fourier transform infrared spectroscopy. Strong evidence that the grafting reaction was successful was given by the presence of a band, with a maximum at 1732 cm−1, that was characteristic of carbonyl group absorption and was not initially present in the cellulosic fibers. The water absorption of the cellulosic microfibers grafted with PAA was three times greater than the water absorption of the nongrafted microfibers. The mechanical properties of continuous cellulose filaments did not change drastically with PAA grafting. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 386–393, 2002

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.