Abstract

AbstractAs efforts to replace nonsustainable plastics increase, biocomposites from cellulose fibers and biodegradable polymers like poly(ε‐caprolactone) (PCL) are promising candidates. The necessary adhesion between fibers and matrix can be achieved by grafting polymeric chains onto the fibers. Herein, we report grafting of PCL onto Abaca fibers (AFs), a one‐pot method to obtain a composite containing grafted fiber and free PCL, and the characterization of prepared composite films. Three parameters for pretreatment (disintegration, drying, and solvent exchange) of AF were compared. Short and long PCL chains with molecular weights below and close to the chain entanglement weight of PCL were grafted from AFs. Using benzyl alcohol as an additional initiator, free PCL was simultaneously prepared. The unreacted monomer was removed by precipitation in water, resulting in ready‐made one‐pot composites. The biocomposites containing the free PCL and PCL‐grafted AFs were further processed by a combination of compounding and hot‐pressing. The analyzed mechanical (tensile) and rheological properties show a large dependence on the lengths of the PCL grafts. The herein‐reported composites pave the way for interesting bio‐based alternatives to plastic, especially looking at the tailoring of material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.