Abstract

AbstractStructural characteristics of the methyl methacrylate (MMA)‐grafted silk fibers using tri‐n‐butylborane as an initiator were analyzed by infrared spectroscopy and differential scanning calorimetry (DSC), and their refractive index and tensile properties were measured. Graft polymerization was promoted by FeCl3 pretreatment of the silk. The graft yield reached a maximum by the immersion in 4% FeCl3 solution for 1 min at 25°C. The infrared spectrum of poly(MMA)‐grafted silk fibers showed overlapped absorption bands of silk fibroin with the β structure and of the grafted MMA polymer. A grafted silk fiber with graft yield of more than 140% exhibited two endothermic peaks at 321°C and 396°C on the DSC curve, attributed to the thermal decomposition of silk fibroin and grafted poly(MMA) chain, respectively. Refractive index measurements suggested that the molecular orientation and the crystallinity of the silk fiber decreased with increasing graft yield. Electron photomicrographs showed that silk was coated by grafted PMMA. The tensile strength of the grafted silk decreased rapidly by the grafting even at a lower level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call