Abstract

ABSTRACT To determine whether grafting increases cadmium (Cd) accumulation in the post-grafting generation of hyperaccumulator plants, the effects of grafting on Cd accumulation characteristics of post-grafting generations of a potential Cd-hyperaccumulator Solanum photeinocarpum were evaluated in pot and field experiments. The following four grafting combinations were examined: ungrafted (UG), self-rooted grafting involving one S. photeinocarpum seedling (SG), self-rooted grafting involving two S. photeinocarpum seedling developmental stages (DG), and grafting on wild potato rootstock (PG). Grafting did not induce genetic changes in S. photeinocarpum, and increased the shoot biomass and the amount of Cd extracted by the shoots of the first, second, and third generations of S. photeinocarpum (PG > DG > SG > UG). Additionally, enhanced superoxide dismutase, peroxidase, and catalase activities and increased soluble protein contents of the first post-grafting generation were observed for the DG and PG, whereas only enhanced superoxide dismutase and peroxidase activities were observed for the SG. Grafting increased the DNA methylation levels by inducing hypermethylation in the first post-grafting generation (PG > DG > SG > UG). Therefore, grafting can enhance the Cd accumulation (phytoremediation) ability of post-grafting generations of S. photeinocarpum by enhancing DNA methylation levels, especially when wild potato rootstock is used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call