Abstract
Covalent organic frameworks (COFs) hold great potential in various applications because of their well-defined pore structures and morphologies. However, most COF materials demonstrate poor dispersibility in solvents that significantly limits their processing and applications. Herein, we report the synthesis of COF-based hollow nanoparticles (h-NPs) with good water dispersibility, high capacity, and thermal responsiveness to load essential oil molecules for longer-term preservation of fruits. Imine-based COF h-NPs possessing a pore width of 1.3 nm, inner/outer diameters of ∼150/239 nm, and high crystallinity were synthesized and grafted with water-soluble polymers such as polyethylene glycol or poly(N-isopropylacrylamide) (PNIPAM) with molecular weights of 1-3 kDa. The h-NP products with grafting densities of 0.6-2.1 nm-2 can be well dispersed in water at room temperature. PNIPAM-grafted ones are temperature-responsive in that they can precipitate out from the dispersion at 40 °C and redisperse at 25 °C for at least 15 cycles. The h-NPs are used as nanocarriers to load essential oils such as hexanal and trans-2-hexenal with a high capacity of 1.1 g/g for fruit fresh-keeping, and the encapsulated preservatives can be released controllably at 25-40 °C as regulated by the grafted polymers. As a result, the storage time of cherry tomatoes can be prolonged by 4 days compared to the control run. Moreover, these h-NPs can be recycled and reused. Our work highlights the potential of COF nanomaterials grafting with stimuli-responsive polymers for controlled release application in various food preservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.