Abstract

A strategy is proposed to develop a stationary phase for hydrophilic interaction liquid chromatography (HILIC) using the synergistic effect of polyhedral oligomeric silsesquioxane (POSS) and copolymer brushes. Octahedral octa-aminopropylsisesquioxane (8NH2-POSS) was first bound to silica gel, followed by bromination to form a cubic initiator. Then, using acrylamide (AM) and dihydroxypropyl methacrylate (DPMA) as mixed monomers, surface initiated-atom transfer radical polymerization was conducted to prepare a stationary phase comprising cubic copolymer brushes with amide and diol groups. The characterization of the stationary phase confirmed the successful synthesis of Sil-NH2-POSS/Poly(AM-co-DPMA). The chromatographic properties were investigated using nucleosides, organic acids and β-agonists to find that our designed column has superior hydrophilic property, better separation performance compared with classical HILIC columns consisting of diol- or amino-modified silica. The systematic investigation of the retention mechanism and separation selectivity using various types of polar compounds revealed that Sil-NH2-POSS/Poly(AM-co-DPMA) follows a mixed-mode retention composed of HILIC and electrostatic interactions. Besides, it exhibits good column efficiency and stability. The role of 8NH2-POSS in the separation was evaluated by comparing the performance of Sil-NH2-POSS/Poly(AM-co-DPMA) and poly(AM-co-DPMA)-modified silica without 8NH2-POSS. In conclusion, our designed based on POSS and hydrophilic copolymer brushes can contribute to the development of HILIC separation materials with enhanced performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call