Abstract

Based on dissolution/deposition chemistry, together with multielectron redox reactions, lithium-sulfur (Li-S) batteries have been demonstrated as a promising energy storage system. However, the diffusion of soluble lithium polysulfide intermediates (LiPSs) to bulk electrolyte results in the fast capacity fade of a Li-S cell. How to confine the LiPSs within the cathode while retaining high reversible capacity remains a huge challenge. In this work, N-bromophthalimide, an organic molecule with an aromatic heterocyclic ring and a reactive halogen bond, is introduced as an electrolyte additive to conquer the excessive dissolution and diffusion of LiPSs by in situ formation of an organopolysulfide deposition layer. This electrochemically active layer not only maintains the internal sulfur conversion but also prevents LiPSs from diffusing into the electrolyte bulk, thereby improving the cycling and rate performance of Li-S batteries. This study provides a feasible strategy for regulating the reaction region and path for high-performance Li-S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.