Abstract

In plants, small interfering RNAs (siRNA) and microRNAs move to distant tissues where they control numerous developmental and physiological processes such as morphogenesis and stress responses. Grafting techniques and transient expression systems have been employed to show that sequence-specific siRNAs with a size of 21-24 nucleotides traffic to distant organs. We used inverted-repeat constructs producing siRNA targeting the meiosis factor DISRUPTED MEIOTIC cDNA 1 (DMC1) and GFP to test whether silencing signals move into meiotically active tissues. In grafted Nicotiana tabacum, a transgenic DMC1 siRNA signal made in source tissues preferably entered the anthers formed in the first flowers. Here, the DMC1 siRNA interfered with meiotic progression and, consequently, the flowers were at least partially sterile. In agro-infiltrated N. benthamiana plants, a GFP siRNA signal produced in leaves was allocated and active in most flower tissues including anthers. In hypocotyl-grafted Arabidopsis thaliana plants, the DMC1 silencing signal consistently appeared in leaves, petioles, and stem, and only a small number of plants displayed DMC1 siRNA signals in flowers. In all three tested plant species the systemic silencing signal penetrated male sporogenic tissues suggesting that plants harbour an endogenous long-distance small RNA transport pathway facilitating siRNA signalling into meiotically active cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.