Abstract

AbstractCationically polymerizable olefins can be efficiently grafted onto poly(vinyl chloride) in the presence of alkylaluminum compounds. The substitution of labile chlorines in PVC by various branches yields a product of improved thermal stability as compared with unmodified PVC. Thus the grafting of a few per cent of polyisobutylene or poly‐butadiene onto PVC gives graft copolymers superior in thermal stability to the PVC backbone, as determined by thermogravimetric and differential thermal analyses as well as color development of molded films. At advanced stages of thermal degradation the thermal stability of poly(vinyl chloride)‐g‐isobutylene) (PVC‐g‐PIB is some 40°C superior to the unmodified PVC. In addition to grafting of polymer chains onto the PVC backbone, other methods are also available to achieve improved thermal stability. In pentane suspension, alkylaluminum compounds efficiently alkylate labile chlorines in PVC, and the product exhibits improved thermal stability. Alternatively, PVC carbonium ions can alkylate aromatic compounds, and these products also exhibit high heat stability. Based on the assumption that certain alkylaluminums quantitatively react with labile chlorines in PVC, it was estimated that 2–3% of the chlorines present in suspension‐grade PVC are labile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call