Abstract
AbstractAnthracene‐functionalized oxanorbornene monomer and oxanorbornenyl polystyrene (PS) with ω‐anthracene end‐functionalized macromonomer were first polymerized via ring‐opening metathesis polymerization using the first‐generation Grubbs' catalyst in dichloromethane at room temperature and then clicked with maleimide end‐functionalized polymers, poly(ethylene glycol) (PEG)‐MI, poly(methyl methacrylate) (PMMA)‐MI, and poly(tert‐butyl acrylate) (PtBA)‐MI in a Diels–Alder reaction in toluene at 120 °C to create corresponding graft copolymers, poly(oxanorbornene)‐g‐PEG, poly(oxanorbornene)‐g‐PMMA, and graft block copolymers, poly(oxanorbornene)‐g‐(PS‐b‐PEG), poly(oxanorbornene)‐g‐(PS‐b‐PMMA), and poly(oxanorbornene)‐g‐(PS‐b‐PtBA), respectively. Diels–Alder click reaction efficiency for graft copolymerization was monitored by UV–vis spectroscopy. The dn/dc values of graft copolymers and graft block copolymers were experimentally obtained using a triple detection gel permeation chromatography and subsequently introduced to the software so as to give molecular weights, intrinsic viscosity ([η]) and hydrodynamic radius (Rh) values. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.