Abstract

Graft copolymers of polyurethane (PU) with various vinyl monomers were synthesized through a one-pot but two-step miniemulsion polymerization process. Firstly, the polycondensation of isophorone diisocyanate (IPDI) with hydroxyl-terminated polybutadiene (HTPB) had been performed in aqueous miniemulsion at 40 °C in order to obtain PU dispersions. Consecutively, an in-situ graft copolymerization of the vinyl monomers with the synthesized PU was initiated by γ-ray radiation at room temperature. The grafting efficiency of PU with vinyl monomer ( G PU/monomer) was calculated from 1H NMR spectra and the particle morphology of the final hybrid latex was observed by transmission electron microscopy (TEM). As there was no monomer transferring in miniemulsion system, homogenous hybrid particles would be synthesized provided that the monomer was miscible with PU, such as styrene. With the increase of the polarity of the monomer, the compatibility of PU with monomer decreased. G PU/monomer varied as G PU/styrene(37%)> G PU/butyl acrylate (BA)(21%)> G PU/methyl methacrylate (MMA)(12%). The proportion of homogeneous nucleation would increase as the hydrophilicity of the monomer increased. High temperature would destabilize the miniemulsion so as to result in a less grafting efficiency. Compared to the phase separation during the seeded emulsion polymerization, the miniemulsion polymerization method facilitated the preparation of homogeneous materials owing to its monomer droplet nucleation mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call