Abstract

AbstractTo develop new hemopurification systems based on cellulose membrane, we synthesized a graft copolymer of cellulose with poly(2‐methacryloyloxyethyl phosphorylcholine) (MPC) by a metal‐catalyzed atom transfer radical polymerization process in homogeneous media. First, cellulose was dissolved in a DMAc/LiCl solution system, and it reacted with 2‐bromoisobutyloyl bromide to produce macroinitiator (cell‐BiB). Then, MPC was polymerized to the cellulose backbone in a homogeneous DMSO/methanol mixture solution in the presence of cell‐BiB. Characterization with FT‐IR, NMR, and GPC measurements showed that there obtained a graft copolymer of cellulose backbone and poly(MPC) side chains (cell‐PMPC) with well‐defined structure, indicating a controlled/“living” radical polymerization. The proteins adsorption studies showed that cellulose membranes modified by the as‐prepared cell‐PMPC owns good protein adsorption resistance. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3306–3313, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.