Abstract

AbstractPropargyl methacrylate with its acetylene function protected with a silyl group is polymerized via the reversible addition fragmentation chain transfer (RAFT) process, using cyanoisopropyl dithiobenzoate (CPDB) as RAFT agent, and subsequently deprotected to afford a polymer backbone where each repeated unit is decorated with an acetylene functionality (1000 < Mn < 13,600 g mol−1, 1.07 < PDI < 1.29). In parallel, an azide functionalized xanthate (ethoxythiocarbonylsulfanyl‐acetic acid 3‐azido‐propyl ester) was employed to prepare narrow polydisperse poly(vinyl acetate) (Mn = 850 g mol−1, PDI = 1.20). The two polymers are conjugated by Huisgen 1,3‐dipolar cycloaddition to afford narrow polydisperse comb polymer (1.12 < PDI < 1.18, 3400 < Mn < 12,500 g mol−1, based on linear polystyrene calibration, 4500 < M < 15,600 g mol−1). The study places special emphasis on following the copper catalyzed 1,3‐dipolar cycloaddition via Fourier Transform Infrared Spectroscopy (FTIR) as well as via on‐line UV–Vis photospectrometry on several model compounds, i.e. the nonmonomer inserted azido‐xanthate RAFT/MADIX agent as well as a 2‐propargyl‐2‐bromopropionate and 3‐azidopropyl‐2‐bromopropionate model compounds. A suitable absorption band in the VIS at 666 nm (tentatively assigned to a charge transfer complex between copper(I) and the forming triazole moieties) is identified as a promising sensor for following the click reaction kinetics, thus allowing for the rapid assessment of reaction completion in an on‐line fashion. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 155–173, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.