Abstract

Poly(N-isopropylacrylamide) (PIPAAm) exhibits a reversible, temperature-dependent soluble/insoluble transition at its critical temperature in aqueous media. When PIPAAm molecules are covalently attached to a solid surface, the graft configuration greatly affects the thermoresponsive wettability changes of PIPAAm-modified surfaces. Three types of temperature-responsive surfaces were prepared using PIPAAm grafts of different molecular architectures: PIPAAm terminally grafted surfaces, PIPAAm looped chain grafted surfaces using a copolymer of IPAAm and N-acryloxysuccinimide, and PIPAAm terminally grafted onto immobilized PIPAAm loops. These surfaces were prepared by changing the graft architecture as well as the density of PIPAAm chains to investigate temperature-responsive wettability changes. All surfaces showed temperature-responsive hydrophilic/hydrophobic surface property alterations demonstrated by observed large and discontinuous wettability changes. On both surfaces bearing terminally grafted PIPAAm...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.