Abstract

We propose a new algorithm for recovery of sparse signals from their compressively sensed samples. The proposed algorithm benefits from the strategy of gradual movement to estimate the positions of non-zero samples of sparse signal. We decompose each sample of signal into two variables, namely “value” and “detector”, by a weighted exponential function. We update these new variables using gradient descent method. Like the traditional compressed sensing algorithms, the first variable is used to solve the Least Absolute Shrinkage and Selection Operator (Lasso) problem. As a new strategy, the second variable participates in the regularization term of the Lasso (l 1 norm) that gradually detects the non-zero elements. The presence of the second variable enables us to extend the corresponding vector of the first variable to matrix form. This makes possible use of the correlation matrix for a heuristic search in the case that there are correlations among the samples of signal. We compare the performance of the new algorithm with various algorithms for uncorrelated and correlated sparsity. The results indicate the efficiency of the proposed methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.