Abstract

Discrete wavelet transforms of ultrasound waves is used to measure the gradual wear of carbide inserts during turning operations. Ultrasound waves, propagating at a nominal frequency of 10 MHz, were pulsed into the cutting tools towards the cutting edge at a burst frequency of 10 KHz. The reflected waves off the mark, nose and flank surfaces were digitized at a sampling rate of 100 MHz. Daubechies Quadrature Mirror Filter pair was used to decompose ultrasound signals into frequency packets using a tree structure. Normalized signals in each level of decomposition were used to search for a neural network architecture that correlates the ultrasound measurements to the wear level on the tool. A three-layer Multi-Layer Perceptron architecture yielded the best correlation (95.9%) using the wave packets from the fourth level of decomposition with frequencies 3.75–4.375 and 5.625–6.875 MHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.