Abstract
In the fuzzy theory of sets and groups, the use of α-levels is a standard to translate problems from the fuzzy to the crisp framework. Using strong α-levels, it is possible to establish a one to one correspondence which makes possible doubly, a gradual and a functorial treatment of the fuzzy theory. The main result of this paper is to identify the class of fuzzy sets, respectively, fuzzy groups, with subcategories of the functorial categories Set (0, 1], resp., Gr (0, 1]. In this line, the algebraic potential of this theory will be reached, in forthcoming papers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.